Full text loading...
Laboratory techniques
/content/chapter/10.22233/9781910443132.chap10
Laboratory techniques
- Authors: John Chitty and Nick Carmichael
- From: BSAVA Manual of Exotic Pet and Wildlife Nursing
- Item: Chapter 10, pp 243 - 259
- DOI: 10.22233/9781910443132.10
- Copyright: © 2008 British Small Animal Veterinary Association
- Publication Date: January 2012
Abstract
This chapter looks at blood sampling, skin sampling, urine collection, faecal appearance, bacteriology, and the handling of pathological samples. Includes self-assessment questions.
Preview this chapter:
Laboratory techniques, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/10.22233/9781910443132/9781910443132.10-1.gif/content/chapter/10.22233/9781910443132.chap10
Figures
/content/figure/10.22233/9781910443132.chap10.ch10fig2
10.2
The right jugular vein of an anaesthetized ferret. (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_2_thumb.gif
10.22233/9781910443132/fig10_2.png
10.2
The right jugular vein of an anaesthetized ferret. (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig3
10.3
(a) Taking blood from the cranial vena cava of a guinea pig. The sedated animal is in dorsal recumbency with its head over the edge of a table. (b) The needle enters the left thoracic inlet, angled toward the right hindleg. (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_3_thumb.gif
10.22233/9781910443132/fig10_3.png
10.3
(a) Taking blood from the cranial vena cava of a guinea pig. The sedated animal is in dorsal recumbency with its head over the edge of a table. (b) The needle enters the left thoracic inlet, angled toward the right hindleg. (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig4
10.4
The lateral saphenous vein of a rabbit (arrowed). (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_4_thumb.gif
10.22233/9781910443132/fig10_4.png
10.4
The lateral saphenous vein of a rabbit (arrowed). (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig5
10.5
The marginal ear vein of a rabbit with an intravenous catheter in place (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_5_thumb.gif
10.22233/9781910443132/fig10_5.png
10.5
The marginal ear vein of a rabbit with an intravenous catheter in place (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig7
10.7
The right jugular vein of a peregrine falcon (anaesthetized). (Reproduced from the
BSAVA Manual of Raptors, Pigeons and Passerine Birds
; © John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_7_thumb.gif
10.22233/9781910443132/fig10_7.png
10.7
The right jugular vein of a peregrine falcon (anaesthetized). (Reproduced from the
BSAVA Manual of Raptors, Pigeons and Passerine Birds
; © John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig8
10.8
The ulnar vein of a tawny owl. (Reproduced from the
BSAVA Manual of Raptors, Pigeons and Passerine Birds
; © John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_8_thumb.gif
10.22233/9781910443132/fig10_8.png
10.8
The ulnar vein of a tawny owl. (Reproduced from the
BSAVA Manual of Raptors, Pigeons and Passerine Birds
; © John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig9
10.9
The caudal tibial vein of a pigeon. (Reproduced from the
BSAVA Manual of Raptors, Pigeons and Passerine Birds
; © John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_9_thumb.gif
10.22233/9781910443132/fig10_9.png
10.9
The caudal tibial vein of a pigeon. (Reproduced from the
BSAVA Manual of Raptors, Pigeons and Passerine Birds
; © John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig10
10.10
Venepuncture of the ventral tail vein in a bearded dragon. (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_10_thumb.gif
10.22233/9781910443132/fig10_10.png
10.10
Venepuncture of the ventral tail vein in a bearded dragon. (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig11
10.11
Locating the heart in a large anaesthetized boa constrictor using an 8 MHz Doppler ultrasound probe. (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_11_thumb.gif
10.22233/9781910443132/fig10_11.png
10.11
Locating the heart in a large anaesthetized boa constrictor using an 8 MHz Doppler ultrasound probe. (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig12
10.12
Venepuncture of the dorsal branch of the right jugular vein of a tortoise. The lines show the two branches of the jugular vein. (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_12_thumb.gif
10.22233/9781910443132/fig10_12.png
10.12
Venepuncture of the dorsal branch of the right jugular vein of a tortoise. The lines show the two branches of the jugular vein. (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig13
10.13
Venepuncture using the subcarapacial vein. The needle is angled so that it enters the body where the skin joins the shell, dorsal to the head. It then passes dorsally to access the vein just ventral to the vertebrae. (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_13_thumb.gif
10.22233/9781910443132/fig10_13.png
10.13
Venepuncture using the subcarapacial vein. The needle is angled so that it enters the body where the skin joins the shell, dorsal to the head. It then passes dorsally to access the vein just ventral to the vertebrae. (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig14
10.14
Venepuncture of the dorsal tail vein of a tortoise. (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_14_thumb.gif
10.22233/9781910443132/fig10_14.png
10.14
Venepuncture of the dorsal tail vein of a tortoise. (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig15
10.15
The large buffy coat in this sample suggests that the patient (a bearded dragon) has leukaemia. Lymphoproliferative disease is common in this species. (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_15_thumb.gif
10.22233/9781910443132/fig10_15.png
10.15
The large buffy coat in this sample suggests that the patient (a bearded dragon) has leukaemia. Lymphoproliferative disease is common in this species. (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig17
10.17
An impression smear from an exudative skin lesion in a rabbit. The presence of bacteria and heterophils confirms pyoderma. (Diff-Quik stain; original magnification x 1000) (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_17_thumb.gif
10.22233/9781910443132/fig10_17.png
10.17
An impression smear from an exudative skin lesion in a rabbit. The presence of bacteria and heterophils confirms pyoderma. (Diff-Quik stain; original magnification x 1000) (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig18
10.18
A rat louse (Polyplax spinulosa) (female). (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_18_thumb.gif
10.22233/9781910443132/fig10_18.png
10.18
A rat louse (Polyplax spinulosa) (female). (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig19
10.19
A Chirodiscoides fur mite from a guinea pig. (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_19_thumb.gif
10.22233/9781910443132/fig10_19.png
10.19
A Chirodiscoides fur mite from a guinea pig. (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig20
10.20
A sarcoptid mite from a rat. (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_20_thumb.gif
10.22233/9781910443132/fig10_20.png
10.20
A sarcoptid mite from a rat. (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig21
10.21
Collection of feather pulp from a blood feather. (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_21_thumb.gif
10.22233/9781910443132/fig10_21.png
10.21
Collection of feather pulp from a blood feather. (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig22
10.22
Acetate strip applied to the skin of a cockatiel. © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_22_thumb.gif
10.22233/9781910443132/fig10_22.png
10.22
Acetate strip applied to the skin of a cockatiel.
/content/figure/10.22233/9781910443132.chap10.ch10fig24
10.24
A scaling lesion on the forelimb of a green iguana. Removal of the superficial scab, followed by an impression smear of the underlying lesion, confirmed a fungal infection. (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_24_thumb.gif
10.22233/9781910443132/fig10_24.png
10.24
A scaling lesion on the forelimb of a green iguana. Removal of the superficial scab, followed by an impression smear of the underlying lesion, confirmed a fungal infection. (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig25
10.25
Normal red pigmented urine from a rabbit. (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_25_thumb.gif
10.22233/9781910443132/fig10_25.png
10.25
Normal red pigmented urine from a rabbit. (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig26
10.26
(a) Unfixed urine 24 hours old (original magnification x500). While bacteria are present, cells are too autolysed to be identified. (b) Fixed urine. Same urine sample fixed with buffered formalin 2 drops/ml, 24 hours old (original magnification x500). Note: the lobulated nuclei of neutrophils are clearly preserved, allowing the cells to be identified. (© Nick Carmichael) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_26_thumb.gif
10.22233/9781910443132/fig10_26.png
10.26
(a) Unfixed urine 24 hours old (original magnification x500). While bacteria are present, cells are too autolysed to be identified. (b) Fixed urine. Same urine sample fixed with buffered formalin 2 drops/ml, 24 hours old (original magnification x500). Note: the lobulated nuclei of neutrophils are clearly preserved, allowing the cells to be identified. (© Nick Carmichael)
/content/figure/10.22233/9781910443132.chap10.ch10fig27
10.27
(a) Haematuria in a sun conure, caused by lead toxicosis. Frank, haemorrhage-free blood is mixed with normal urine. (b) Haematuria should not be confused with melaena, as seen in this hawk dropping. Here, the faecal portion contains dark digested blood from a proventricular ulcer and the blood staining emanates from this. (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_27_thumb.gif
10.22233/9781910443132/fig10_27.png
10.27
(a) Haematuria in a sun conure, caused by lead toxicosis. Frank, haemorrhage-free blood is mixed with normal urine. (b) Haematuria should not be confused with melaena, as seen in this hawk dropping. Here, the faecal portion contains dark digested blood from a proventricular ulcer and the blood staining emanates from this. (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig28
10.28
(a) Droppings from a parrot with enteritis. Contrast with (b), a normal mute from a falcon. Note the effect caused by normal (healthy) ejection of the mute. This is referred to as ‘slicing’. (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_28_thumb.gif
10.22233/9781910443132/fig10_28.png
10.28
(a) Droppings from a parrot with enteritis. Contrast with (b), a normal mute from a falcon. Note the effect caused by normal (healthy) ejection of the mute. This is referred to as ‘slicing’. (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig29
10.29
Normal budgerigar droppings on sandpaper. While these are clearly normal, it is hard to distinguish abnormalities unless droppings are collected on paper. (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_29_thumb.gif
10.22233/9781910443132/fig10_29.png
10.29
Normal budgerigar droppings on sandpaper. While these are clearly normal, it is hard to distinguish abnormalities unless droppings are collected on paper. (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig30
10.30
Some abnormal bird droppings. (a) From an African grey parrot with polyuria. (b) Biliverdinuria in a falcon. (c) Undigested seed in droppings is a sign of upper gastrointestinal disturbance. This must be distinguished from loose droppings landing on discarded seed. (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_30_thumb.gif
10.22233/9781910443132/fig10_30.png
10.30
Some abnormal bird droppings. (a) From an African grey parrot with polyuria. (b) Biliverdinuria in a falcon. (c) Undigested seed in droppings is a sign of upper gastrointestinal disturbance. This must be distinguished from loose droppings landing on discarded seed. (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig31
10.31
Gram staining. (a)
Clostridium proliferation; large Gram-positive (dark blue) rods noted on a background containing smaller bacteria and debris in a faecal smear from a penguin (original magnification x1000). (b)
Macrorhabdus ornithogaster from a wasting budgerigar (original magnification x400). (© John Chitty) (c)
Candida showing typical narrow-based budding and morphology from the gastrointestinal tract of a vulture (original magnification x1000). (© Nick Carmichael) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_31_thumb.gif
10.22233/9781910443132/fig10_31.png
10.31
Gram staining. (a)
Clostridium proliferation; large Gram-positive (dark blue) rods noted on a background containing smaller bacteria and debris in a faecal smear from a penguin (original magnification x1000). (b)
Macrorhabdus ornithogaster from a wasting budgerigar (original magnification x400). (© John Chitty) (c)
Candida showing typical narrow-based budding and morphology from the gastrointestinal tract of a vulture (original magnification x1000). (© Nick Carmichael)
/content/figure/10.22233/9781910443132.chap10.ch10fig32
10.32
A lungworm larva (Crenosoma striatum) from a hedgehog. (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_32_thumb.gif
10.22233/9781910443132/fig10_32.png
10.32
A lungworm larva (Crenosoma striatum) from a hedgehog. (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig33
10.33
A nematode (Trichostrongylus spp.) egg in a faecal sample from a rabbit (x400 original magnification). A Saccharomyces yeast cell can be seen to the left (arrowed). (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_33_thumb.gif
10.22233/9781910443132/fig10_33.png
10.33
A nematode (Trichostrongylus spp.) egg in a faecal sample from a rabbit (x400 original magnification). A Saccharomyces yeast cell can be seen to the left (arrowed). (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig34
10.34
Trichomonads from a budgerigar crop wash. These parasites may also be found in faecal samples. (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_34_thumb.gif
10.22233/9781910443132/fig10_34.png
10.34
Trichomonads from a budgerigar crop wash. These parasites may also be found in faecal samples. (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig35
10.35
Bird and reptile endoparasite eggs (all at x400 original magnification). (a) Avian Capillaria. (b) Avian cestode. (c) Oxyurids (Pharyngodon spp.) (pinworm) from a bearded dragon. (d) Tortoise ascarid (Angusticaecum sp.) (© John Chitty) © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_35_thumb.gif
10.22233/9781910443132/fig10_35.png
10.35
Bird and reptile endoparasite eggs (all at x400 original magnification). (a) Avian Capillaria. (b) Avian cestode. (c) Oxyurids (Pharyngodon spp.) (pinworm) from a bearded dragon. (d) Tortoise ascarid (Angusticaecum sp.) (© John Chitty)
/content/figure/10.22233/9781910443132.chap10.ch10fig36
10.36
Techniques for preparing smears from blood and fluid samples. © 2012 British Small Animal Veterinary Association
10.22233/9781910443132/fig10_36_thumb.gif
10.22233/9781910443132/fig10_36.png
10.36
Techniques for preparing smears from blood and fluid samples.